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Abstract 

The behavior of isolated drops, and binary and ternary systems of 

drops moving in tandem, in decelerating flows are numerically 

studied employing a finite-volume interface-tracking numerical 

scheme and a lattice-Boltzmann method for two-phase flows. 

The influence of Weber and Ohnesorge numbers, separation 

distance between drops, and drop size-ratio on the transient 

deformation and breakup of the drops are discussed. Drag 

coefficients for the drops are also reported. It is shown that in 

binary drops, the trailing drop decelerates slower than the leading 

one and breaks up slower. Both drops decelerate slower than the 

isolated drop. In the case of ternary drops, the three drops 

decelerate slower than the isolated one. The leading drop breaks 

up fastest followed by the middle one. The drag coefficients are 

transient and vary significantly from those of spheres in transient 

flows as a result of drop deformation.  

Introduction  

Drops and systems of drops are encountered in many 

applications. The focus in this manuscript is on liquid fuel sprays 

where the injection of the liquid leads to atomization which 

generates drops [7,11]. The injected liquid normally exits the 

injector orifice at high velocity and subsequently the jet velocity 

decreases as the liquid shares its momentum with the ambient 

gas. In this sense, the drops are in a decelerating flow. Flow 

deceleration leads to significant forces that influence the drop 

and this can lead to drop deformation and possibly drop breakup 

[2,4,9,13,16]. In the case of multiple drops interacting with each 

other, such as drops which are trailing one another, the flow 

generated by the leading drop can influence the trailing drop. 

This can cause changes in the drop behaviour from that of an 

isolated drop. Furthermore, the interaction can change drop 

dynamics and lead to drop collisions and coalescence which, in 

turn, can change the size distribution of drops in the spray. This 

has consequence in vaporizing and reacting fuel sprays where the 

size distribution of drops influence the vaporization rate which, 

in turn, influences the heat release rate and pollutant formation 

rate. This behaviour is also dependent on the properties of the 

liquid fuel and the ambient gas which can be expressed through 

non-dimensional numbers. 

In this work, two numerical approaches are employed for the 

study. For the single drop studies, a hybrid compressible-

incompressible numerical method in which the liquid phase is 

treated as incompressible and the gas phase as compressible is 

employed [13]. Finite volume discretization of the strong 

conservative form of the governing equations is carried out and 

the resulting equations are solved for both phases on an 

unstructured grid with interface conditions at the boundary 

separating the two phases. The artificial compressibility method 

of Chorin [1] is employed in the incompressible (liquid) phase 

and both the compressible flow and incompressible flow 

equations are solved by introducing a pseudo-time in the 

unsteady governing equations which allows time-marching 

steady state solvers to be employed.  A finite volume approach 

with a cell-centered scheme is chosen to solve the governing 

equations. The convective fluxes are estimated by employing a 

total-variation-diminishing (TVD) scheme [15]. A second-order 

time accurate implicit scheme is used. The pseudo-time marching 

is carried out using a four-stage Runge-Kutta scheme. The 

geometric conservation law principle [12] is also solved 

numerically using the same scheme that is employed for 

integrating the governing equations of the two fluids. The 

boundaries of the computational domain consist of flow 

boundaries and an axisymmetry boundary. For inflow-outflow 

boundaries, the flow is assumed locally to be one-dimensional 

along the direction normal to the boundary surface element. The 

fluxes at the boundary surfaces are estimated using variables that 

are obtained by solving a local one-dimensional inviscid (LODI) 

system of equations [8]. Non-reflective boundary conditions are 

implemented in LODI by specifying amplitudes of the incoming 

waves to be constant in time. 

The numerical method discussed above is time consuming and 

computational cost increases dramatically when multiple drops 

are considered. Hence, the multiple drop cases are simulated 

using the lattice-Boltzmann method (LBM) [3,10]. The key 

equation is the well known Boltzmann transport equation 

expressed as  
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where f is the distribution function, ξ is the particle velocity, t is 

time, and F represents external forces. In single-phase flows, F is 

zero for systems without external force. In two-phase flows F 

represents the interfacial and surface tension forces. The term is 

modeled as  

sFF   .          (2)

          

where is the non-ideal part of the equation of state (EOS) 

given by 
2
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We employ the Carnahan-Starling-van der Waals EOS.   plays 

an important role in phase segregation as its /1p curve 



shows regions where 0/ ddp . This represents an unstable 

physical situation and is the driving mechanism for keeping the 

phases segregated. The term 
sF


in Eq. (2) represents the surface 

tension force given by 
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where  is a surface tension parameter. It is related to the 

surface tension of the fluid  by  
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2

/     (5) 

where n is the normal to the interface. In practice, to alleviate 

the numerical stiffness associated with the intermolecular forces, 

a suitable transformation is applied to the distribution function 

and an index function is employed in place of density to 

determine different phases [3]. Note that hydrodynamic variables 

such as density and velocity are computed by taking moments of 

f in velocity space. 

Interface Conditions for Isolated Drops 

 

The interface conditions for the isolated drop studies will now be 

briefly discussed. Consider Fig. 1 which shows the interface (a) 

and (b) the unstructured grid developed on either side of the 

interface. 

 

 
(a)                                                  (b) 

Figure 1. (a) Control volume employed to derive the interface conditions; 

(b) view of the grid in and around the liquid drop at the start of 

computation. 

 

The assumptions made for the control volume analysis are: 

i) Thickness of control volume is negligible at the interface. 

ii) Mass within the interface is negligible. 

iii) Velocity at the interface is subjected to the no-slip 

condition. 

 

These assumptions lead to the following interface relations: 

Mass: 
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where
 vm is the local vaporization mass flow rate per unit surface 

area and 
intV  is the interface velocity vector which is defined as 

the sum of the liquid phase velocity and the surface regression 

speed due to vaporization.  

Momentum normal to the interface: 
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Momentum tangential to the interface: 

ˆ ˆˆ ˆ( ) ( ) al gn t n t          (6) 

where 
a is the Marangoni stress contribution that arises due to 

the surface tension gradient in presence of surface temperature or 

composition gradients. 
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where   is the surface tension and   is the curvature of the 

interface, and e is the total specific energy of gas (g) and liquid 

(l). 

Recall that in the case of the LBM, the boundary conditions are 

naturally computed with á priori specification.  In the section that 

follows, results from isolated drop studies will be presented. This 

will be followed in the next section with results from simulations 

of binary and ternary drop systems. The final section will 

conclude the paper. 

Characterizing Non-Dimensional Parameters 

The independent non-dimensional parameters that are employed 

for characterizing the problem are the Weber number Weg, 
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the Ohnesorge number Oh, 
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the liquid-to-gas density ratio r, 
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and the liquid-to-gas viscosity ratio λ, 
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In Eqs. (8) – (11), ρ is the density, μ is the dynamic viscosity, D 

is the drop diameter, U is its velocity, and σ is the surface 

tension. The subscripts l and g are for the liquid and gas, 

respectively. An additional parameter that may be employed is 

the Reynolds number Re, 
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Notice that this is not an independent parameter. Weg is a non-

dimensional measure of gas inertial forces to surface tension 

forces.  A higher Weg would suggest greater tendency to lead to 

deformation. Oh is a non-dimensional measure of liquid viscosity 

normalized by the square root of the surface tension and liquid 

inertial forces. A high Oh would suggest lower tendency to 

deform. In the case of multiple drops, these parameters can be 

defined for individual drops. 

Isolated Drop Behavior 

The parameters for the study have been selected to correspond to 

those of drops in high-speed atomizing sprays, such as those 

encountered in internal combustion engines and gas turbines. As 

an example, in the near-field of a diesel spray, say within 100 

orifice diameters, the drop-to-gas relative velocity lies in the 

range of 10–100 m/ s, drop diameter is about 10–100 µm, liquid 

density is about 800–900 kg/m3, and gas density varies from 15 

to 40 kg/m3. The liquid viscosity is about 2_10−3 Pa s and 

surface tension is about 2.2_10−2 N/m. The gas viscosity is about 

1.8_10−5 Pa s. With these values, the range of the non-

dimensional parameters lie in the range 20–60 for r, 80–200 for 



Reg, 1–200 for Weg, and 0.01–0.1 for Ohl. A density ratio r of 50 

is considered for the results below. The values of Weg considered 

are 1, 10, and 100, and Ohl are 0.01 and 0.1. Based on the 

relative velocity of drop and gas, the initial Reg is set to be 150. 

The transient results presented below are given in terms of non-

dimensional time t+, where t+ is defined t+=t ·U /(D/2). 
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Figure 2. Computed drop shapes (left-hand column) and drag coefficients 
(right-hand column) as a function of non-dimensional time for (a) 

Weg=10, Oh = 0.01, (b) Weg=100, Oh=0.01, and (c) Weg = 10, Oh = 0.1 

[14]. 

Computations with a Weg of 1 and Oh = 0.01 revealed that the 

drop behaviour was essentially that of an oscillating drop similar 

to that described in the classical studies of Lamb [6]. The 

maximum deformation of the drop was about 5.8% relative to its 

initial spherical shape. In prior work, it has been shown that this 

frequency and the decay time scale of oscillations obtained from 

these computations are consistent with those given by Lamb. 

Figure 2 (a) shows results for a case where the Weg is increased 

to 10. As expected, the drop deforms significantly relative to the 

Weg = 1 case because of the decreased influence of surface 

tension forces in opposing the inertial forces. The drop shape 

changes from oblate to prolate with oblate shapes resulting in 

larger drag coefficients and prolate shapes resulting in lower drag 

coefficients. The drag coefficient is observed to be higher by as 

much as a factor of 2.5 during the prolate phase. The initial 

decrease and then increase in drag coefficient is due to initial 

transients resulting from the impulsive start of the drop. The 

effects become dramatically pronounced when the Weg is 

increased to 100 (see Fig. 2(c)). In fact, in this case, it is likely 

that secondary breakup may occur. Drag coefficients increase by 

greater than a factor of 10 during the transient phase. Increasing 

the liquid viscosity would increase the time delay associated with 

liquid adjustment to external forces. As a result, the deformation 

effects would be expected to be less severe. Figure 2(c) shows a 

case where the Weg = 10, i.e. the same in Fig. 2(a), but the Oh = 

0.1. Deformation is, in fact, less and the change in drag 

coefficient is lower. 

Binary and Ternary Systems of Drops 

 

Figure 3 shows the binary drop system. The ternary drop system will add 

a third drop with radius R3. The results will first be reported for a system 

where the drop radii are the same and density ratio r = 5, viscosity ratio λ 

= 5, Oh1 = 0.025 and Oh2 = 0.025, and Weg,1= 20 and Weg,2 = 20. The 

initial drop spacing 
*

initd  (
*d  = d/R1) is 3.  

 

 

(a) t
+
 = 2.93 

 

                 (b) t
+
 = 17.58                   (c) t

+
 = 38.09 

Figure 4. Binary drop interactions: Weg,1 = Weg,2 = 20, Oh1 = Oh2 = 

0.025, R2/R1 = 1, 
*

initd  = 3, r = 5, and λ = 5 [5]. 

Differences are evident in the deformation of the drops even in 

the early stages (t+=2.93) primarily because the wake of the 

leading drop cannot grow to its full length because of the 

presence of the trailing drop. With increasing time, the leading 

drop retains more of an oblate shape whereas the trailing drop 

has more of prolate shape. The oblate shape results in greater 

drag compared to the prolate shape as a result of which the 

trailing drop loses less of its momentum and runs into the leading 

drop leading to coalescence (t+ = 17.58 and 38.09). Essentially, 

when two drops are moving in tandem, the leading drop 

decelerates more and deforms more. Consider next a case where 

the Weg of both drops are increased to 50. Figure 5 shows the 

results. The effects seen earlier are further accentuated. In fact, 

the leading drop breaks up. Compared to the isolated drop, the 

deformation of the leading drop is greater because of the changes 

in the flow field induced in the wake region. If the inter-drop 

spacing is increased, this effect is expected to decrease. 

Next, we will consider ternary interacting drops. Two cases will 

be considered, one with the same conditions as the binary drop of 

Fig. 4 (see Fig. 6) and the other with the same condition as the 

Leading 

Drop 

                      
Drop     

         Trailing 
 

Drop        

d 

   

R2 
R1 

Periodic 

Open 

Periodic 

x 

r 



binary drop of Fig. 5. It can be seen from Fig. 6 that at t+=5.86 

the leading drop is most oblate. It then recoils to a prolate shape 

and the middle drop which decelerates less (see discussion of 

binary drop) collides and coalesces with the leading drop (see 

t+=14.65). Subsequently, the third drop also coalesces (t+=35.16) 

with leading drop to form a single drop (t+=46.88). When the 

Weg is increased (see Fig. 7), the leading drop breaks up first, 

followed by the middle drop, and then the trailing drop. Detailed 

analysis of the results show that the leading drop decelerates 

fastest followed by the trailing drop and then the middle drop. 

The breakup of the middle drop in Fig. 7 is aided by the flow 

field.  

 

               t+ = 10.23       t+ = 11.34 

Figure 5. Binary interacting drops with Weg = 50 [5]. 

 

 

   t+ = 5.86    t+ = 14.65 

 

 t+ = 35.16                         t+ = 46.88  t
+
 = 35.16    t

+
 = 46.88 

Figure 6: Ternary interacting drops; same conditions as for binary system 
of Fig. 4 [5]. 

 

   t+ = 11.34    t+ = 12.49 

Figure 7: Ternary interacting drops; same conditions as for binary system 

of Fig. 5 [5]. 

Conclusions 

Isolated drops in a decelerating flow undergo severe deformation 

as the Weg is increased. This deformation alters the drag 

coefficient of the drop dramatically. These results have 

consequences for the modelling of fuel sprays. Current models do 

not account for the changes in drag coefficient on account of 

deformation. Furthermore, they do not account for the changes in 

heat and mass transfer between the two phases on account of 

deformation and transient behaviour. When there is a system of 

drops, the drops interact with each other. For a binary interacting 

system, it is observed that the leading drop decelerates faster and 

breaks up faster (if the Weg is high enough) relative to the trailing 

drop. For a ternary interacting system, the leading drop 

decelerates faster and the middle drop decelerates slowest. As a 

result, the middle drop is likely to merge first with the leading 

drop followed by the trailing drop. The leading drops breaks up 

first, followed by the middle drop (because of the flow induced 

shear), and then the trailing drop. These changes in drop shapes 

in interacting systems influence the drag coefficients of 

individual drops and heat and mass transfer in fuel sprays. The 

collisions and coalescence influence the number and size 

distribution of drops in sprays. Properties of fuels which are 

factored into the relevant non-dimensional parameters influence 

the outcome. 
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